Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
Environ Sci Technol ; 58(16): 7056-7065, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38608141

RESUMEN

The sources and sinks of nitrous oxide, as control emissions to the atmosphere, are generally poorly constrained for most environmental systems. Initial depth-resolved analysis of nitrous oxide flux from observation wells and the proximal surface within a nitrate contaminated aquifer system revealed high subsurface production but little escape from the surface. To better understand the environmental controls of production and emission at this site, we used a combination of isotopic, geochemical, and molecular analyses to show that chemodenitrification and bacterial denitrification are major sources of nitrous oxide in this subsurface, where low DO, low pH, and high nitrate are correlated with significant nitrous oxide production. Depth-resolved metagenomes showed that consumption of nitrous oxide near the surface was correlated with an enrichment of Clade II nitrous oxide reducers, consistent with a growing appreciation of their importance in controlling release of nitrous oxide to the atmosphere. Our work also provides evidence for the reduction of nitrous oxide at a pH of 4, well below the generally accepted limit of pH 5.


Asunto(s)
Óxido Nitroso , Óxido Nitroso/metabolismo , Bacterias/metabolismo , Oxidorreductasas/metabolismo , Desnitrificación
2.
Water Res ; 255: 121460, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38552495

RESUMEN

Carbon amendments designed to remediate environmental contamination lead to substantial perturbations when injected into the subsurface. For the remediation of uranium contamination, carbon amendments promote reducing conditions to allow microorganisms to reduce uranium to an insoluble, less mobile state. However, the reproducibility of these amendments and underlying microbial community assembly mechanisms have rarely been investigated in the field. In this study, two injections of emulsified vegetable oil were performed in 2009 and 2017 to immobilize uranium in the groundwater at Oak Ridge, TN, USA. Our objectives were to determine whether and how the injections resulted in similar abiotic and biotic responses and their underlying community assembly mechanisms. Both injections caused similar geochemical and microbial succession. Uranium, nitrate, and sulfate concentrations in the groundwater dropped following the injection, and specific microbial taxa responded at roughly the same time points in both injections, including Geobacter, Desulfovibrio, and members of the phylum Comamonadaceae, all of which are well established in uranium, nitrate, and sulfate reduction. Both injections induced a transition from relatively stochastic to more deterministic assembly of microbial taxonomic and phylogenetic community structures based on 16S rRNA gene analysis. We conclude that geochemical and microbial successions after biostimulation are reproducible, likely owing to the selection of similar phylogenetic groups in response to EVO injection.

3.
Cancer Res Commun ; 3(6): 952-968, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37377603

RESUMEN

Oncolytic viruses exploited for cancer therapy have been developed to selectively infect, replicate, and kill cancer cells to inhibit tumor growth. However, in some cancer cells, oncolytic viruses are often limited in completing their full replication cycle, forming progeny virions, and/or spreading in the tumor bed because of the heterogeneous cell types within the tumor bed. Here, we report that the nuclear export pathway regulates oncolytic myxoma virus (MYXV) infection and cytoplasmic viral replication in a subclass of human cancer cell types where viral replication is restricted. Inhibition of the XPO-1 (exportin 1) nuclear export pathway with nuclear export inhibitors can overcome this restriction by trapping restriction factors in the nucleus and allow significantly enhanced viral replication and killing of cancer cells. Furthermore, knockdown of XPO-1 significantly enhanced MYXV replication in restrictive human cancer cells and reduced the formation of antiviral granules associated with RNA helicase DHX9. Both in vitro and in vivo, we demonstrated that the approved XPO1 inhibitor drug selinexor enhances the replication of MYXV and kills diverse human cancer cells. In a xenograft tumor model in NSG mice, combination therapy with selinexor plus MYXV significantly reduced the tumor burden and enhanced the survival of animals. In addition, we performed global-scale proteomic analysis of nuclear and cytosolic proteins in human cancer cells to identify the host and viral proteins that were upregulated or downregulated by different treatments. These results indicate, for the first time, that selinexor in combination with oncolytic MYXV can be used as a potential new therapy. Significance: We demonstrated that a combination of nuclear export inhibitor selinexor and oncolytic MYXV significantly enhanced viral replication, reduced cancer cell proliferation, reduced tumor burden, and enhanced the overall survival of animals. Thus, selinexor and oncolytic MYXV can be used as potential new anticancer therapy.


Asunto(s)
Myxoma virus , Neoplasias , Virus Oncolíticos , Humanos , Animales , Ratones , Myxoma virus/genética , Transporte Activo de Núcleo Celular , Proteómica , Virus Oncolíticos/genética
4.
Front Immunol ; 14: 1085911, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37205110

RESUMEN

Introduction: It has been known for over half a century that mixing an antigen with its cognate antibody in an immune complex (IC) can enhance antigen immunogenicity. However, many ICs produce inconsistent immune responses, and the use of ICs in the development new vaccines has been limited despite the otherwise widespread success of antibody-based therapeutics. To address this problem, we designed a self-binding recombinant immune complex (RIC) vaccine which mimics the larger ICs generated during natural infection. Materials and methods: In this study, we created two novel vaccine candidates: 1) a traditional IC targeting herpes simplex virus 2 (HSV-2) by mixing glycoprotein D (gD) with a neutralizing antibody (gD-IC); and 2) an RIC consisting of gD fused to an immunoglobulin heavy chain and then tagged with its own binding site, allowing self-binding (gD-RIC). We characterized the complex size and immune receptor binding characteristics in vitro for each preparation. Then, the in vivo immunogenicity and virus neutralization of each vaccine were compared in mice. Results: gD-RIC formed larger complexes which enhanced C1q receptor binding 25-fold compared to gD-IC. After immunization of mice, gD-RIC elicited up to 1,000-fold higher gD-specific antibody titers compared to traditional IC, reaching endpoint titers of 1:500,000 after two doses without adjuvant. The RIC construct also elicited stronger virus-specific neutralization against HSV-2, as well as stronger cross-neutralization against HSV-1, although the proportion of neutralizing antibodies to total antibodies was somewhat reduced in the RIC group. Discussion: This work demonstrates that the RIC system overcomes many of the pitfalls of traditional IC, providing potent immune responses against HSV-2 gD. Based on these findings, further improvements to the RIC system are discussed. RIC have now been shown to be capable of inducing potent immune responses to a variety of viral antigens, underscoring their broad potential as a vaccine platform.


Asunto(s)
Anticuerpos Antivirales , Complejo Antígeno-Anticuerpo , Animales , Ratones , Proteínas del Envoltorio Viral , Herpesvirus Humano 2 , Anticuerpos Neutralizantes , Vacunas Sintéticas
5.
Environ Sci Process Impacts ; 24(8): 1195-1211, 2022 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-35829655

RESUMEN

Filtered and particulate mercury (Hg) and methylmercury (MMHg), and associated water chemistry parameters, were evaluated bi-hourly for several 30 h periods during the summer and winter seasons at several distinct locations (downstream forested, midstream urban/suburban, upstream industrial) along a creek contaminated with high levels of inorganic Hg to determine if biogeochemical Hg and MMHg cycles respond to the daily photocycle. In summer particulate Hg and MMHg concentrations doubled overnight (excluding the upstream industrial site) concurrent with increases in turbidity and total suspended sediment; no such pattern was evident in winter. Seasonal and diel changes in the activity of macrobiota affecting the suspension of contaminated sediments are likely responsible for these patterns as other potential explanatory variables (e.g., instrument drift, pH, discharge) could not account for the range and timing of our observations. Diel patterns in filtered Hg (HgD) were significant only at locations and times of the year when channel shading was not present and daytime concentrations increased 22-89% above nighttime minima likely caused by direct and indirect photochemical reactions. Relationships between HgD and dissolved organic carbon (DOC) concentration or character were inconsistent between sites. Unlike HgD, there were significant diel patterns in filtered MMHg (MMHgD) at all sites and times of year, with summer concentrations peaking in mid to late afternoon while the timing differed in winter, with concentrations peaking after sunset. Daily variability in MMHgD concentration ranged between 25 and 75%. The results imply key controls on net methylation occur within the stream or on the stream bed and include factors such as small-scale temperature changes in the water column and photosynthetic activity of stream biofilm. With respect to stream monitoring, results from this study indicate (1) consistent timing in stream Hg and MMHg sampling is required for accurate assessment of long-term trends, (2) in situ measurements of turbidity can be used to quantify diel dynamics of both particulate Hg and MMHg concentrations, and (3) in situ fluorescing dissolved organic matter (FDOM), a potential proxy for DOC, was not capable of resolving diel dynamics of filtered Hg or MMHg.


Asunto(s)
Mercurio , Compuestos de Metilmercurio , Contaminantes Químicos del Agua , Monitoreo del Ambiente/métodos , Mercurio/análisis , Agua , Contaminantes Químicos del Agua/análisis
6.
Pathogens ; 11(5)2022 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-35631109

RESUMEN

Immune cell invasion after the transplantation of solid organs is directed by chemokines binding to glycosaminoglycans (GAGs), creating gradients that guide immune cell infiltration. Renal transplant is the preferred treatment for end stage renal failure, but organ supply is limited and allografts are often injured during transport, surgery or by cytokine storm in deceased donors. While treatment for adaptive immune responses during rejection is excellent, treatment for early inflammatory damage is less effective. Viruses have developed highly active chemokine inhibitors as a means to evade host responses. The myxoma virus-derived M-T7 protein blocks chemokine: GAG binding. We have investigated M-T7 and also antisense (ASO) as pre-treatments to modify chemokine: GAG interactions to reduce donor organ damage. Immediate pre-treatment of donor kidneys with M-T7 to block chemokine: GAG binding significantly reduced the inflammation and scarring in subcapsular and subcutaneous allografts. Antisense to N-deacetylase N-sulfotransferase1 (ASONdst1) that modifies heparan sulfate, was less effective with immediate pre-treatment, but reduced scarring and C4d staining with donor pre-treatment for 7 days before transplantation. Grafts with conditional Ndst1 deficiency had reduced inflammation. Local inhibition of chemokine: GAG binding in donor organs immediately prior to transplant provides a new approach to reduce transplant damage and graft loss.

7.
Oncotarget ; 13: 490-504, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35251496

RESUMEN

Multiple myeloma (MM) is a hematological malignancy of plasma cells that remains incurable despite significant progress with myeloablative regimens and autologous stem cell transplantation for eligible patients and, more recently with T cell redirected immunotherapy. Recently, we reported that ex vivo virotherapy with oncolytic myxoma virus (MYXV) improved MM-free survival in an autologous-transplant Balb/c mouse model. Here, we tested the Vk*MYC transplantable C57BL/6 mouse MM model that more closely recapitulates human disease. In vitro, the murine bortezomib-resistant Vk12598 cell line is fully susceptible to MYXV infection. In vivo results demonstrate: (i) autologous bone marrow (BM) leukocytes armed ex vivo with MYXV exhibit moderate therapeutic effects against MM cells pre-seeded into recipient mice; (ii) Cyclophosphamide in combination with BM/MYXV delays the onset of myeloma in mice seeded with Vk12598 cells; (iii) BM/MYXV synergizes with the Smac-mimetics LCL161 and with immune checkpoint inhibitor α-PD-1 to control the progression of established MM in vivo, resulting in significant improvement of survival rates and decreased of tumor burden; (iv) Survivor mice from (ii) and (iii), when re-challenged with fresh Vk12598 cells, developed acquired anti-MM immunity. These results highlight the utility of autologous BM grafts armed ex vivo with oncolytic MYXV alone or in combination with chemotherapy/immunotherapy to treat drug-resistant MM in vivo.


Asunto(s)
Trasplante de Células Madre Hematopoyéticas , Mieloma Múltiple , Myxoma virus , Viroterapia Oncolítica , Virus Oncolíticos , Animales , Médula Ósea , Bortezomib/farmacología , Ciclofosfamida , Trasplante de Células Madre Hematopoyéticas/métodos , Humanos , Inhibidores de Puntos de Control Inmunológico , Ratones , Ratones Endogámicos C57BL , Mieloma Múltiple/terapia , Viroterapia Oncolítica/métodos , Receptor de Muerte Celular Programada 1 , Trasplante Autólogo
8.
Cancers (Basel) ; 14(2)2022 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-35053501

RESUMEN

Cancers that metastasize to the lungs represent a major challenge in both basic and clinical cancer research. Oncolytic viruses are newly emerging options but successful delivery and choice of appropriate therapeutic armings are two critical issues. Using an immunocompetent murine K7M2-luc lung metastases model, the efficacy of MYXV armed with murine LIGHT (TNFSF14/CD258) expressed under virus-specific early/late promoter was tested in an advanced later-stage disease K7M2-luc model. Results in this model show that mLIGHT-armed MYXV, delivered systemically using ex vivo pre-loaded PBMCs as carrier cells, reduced tumor burden and increased median survival time. In vitro, when comparing direct infection of K7M2-luc cancer cells with free MYXV vs. PBMC-loaded virus, vMyx-mLIGHT/PBMCs also demonstrated greater cytotoxic capacity against the K7M2 cancer cell targets. In vivo, systemically delivered vMyx-mLIGHT/PBMCs increased viral reporter transgene expression levels both in the periphery and in lung tumors compared to unarmed MYXV, in a tumor- and transgene-dependent fashion. We conclude that vMyx-mLIGHT, especially when delivered using PBMC carrier cells, represents a new potential therapeutic strategy for solid cancers that metastasize to the lung.

9.
Mol Ther Oncolytics ; 22: 539-554, 2021 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-34553039

RESUMEN

Solid cancers that metastasize to the lungs represent a major therapeutic challenge. Current treatment paradigms for lung metastases consist of radiation therapy, chemotherapies, and surgical resection, but there is no single treatment or combination that is effective for all tumor types. To address this, oncolytic myxoma virus (MYXV) engineered to express human tumor necrosis factor (vMyx-hTNF) was tested after systemic administration in an immunocompetent mouse K7M2-Luc lung metastatic osteosarcoma model. Virus therapy efficacy against pre-seeded lung metastases was assessed after systemic infusion of either naked virus or ex vivo-loaded autologous bone marrow leukocytes or peripheral blood mononuclear cells (PBMCs). Results of this study showed that the PBMC pre-loaded strategy was the most effective at reducing tumor burden and increasing median survival time, but sequential intravenous multi-dosing with naked virus was comparably effective to a single infusion of PBMC-loaded virus. PBMC-loaded vMyx-hTNF also potentially synergized very effectively with immune checkpoint inhibitors anti-PD-1, anti-PD-L1, and anti-cytotoxic T lymphocyte associated protein 4 (CTLA-4). Finally, in addition to the pro-immune stimulation caused by unarmed MYXV, the TNF transgene of vMyx-hTNF further induced the unique expression of numerous additional cytokines associated with the innate and adaptive immune responses in this model. We conclude that systemic ex vivo virotherapy with TNF-α-armed MYXV represents a new potential strategy against lung metastatic cancers like osteosarcoma and can potentially act synergistically with established checkpoint immunotherapies.

10.
Environ Sci Pollut Res Int ; 28(18): 22651-22663, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33420931

RESUMEN

As a global environmental pollutant, mercury (Hg) threatens our water resources and presents a substantial risk to human health. The rate and extent of immobilization of Hg2+ (hereafter, Hg) on engineered sorbents (Thiol-SAMMS®, pine biochar, SediMite™, Organoclay™ PM-199, and quartz sand as a control) was evaluated using flow-through column experiments. The effectiveness of the sorbents was based on (1) the percentage of Hg removed in relation to the total amount of Hg passing the sorbent column, and (2) the rate of Hg uptake compared to the nonreactive tracer bromide (Br-). All sorbents removed Hg to a certain extent, but none of the sorbents removed all the Hg introduced to the columns. Thiol-SAMMS showed the highest mean percentage of Hg removed (87% ± 2.9%), followed by Organoclay PM-199 (71% ± 0.4%), pine biochar (57% ± 22.3%), SediMite (61% ± 0.8%), and the control quartz sand (11% ± 5.6%). Thiol-SAMMS was the only sorbent to exhibit retardation of Hg in comparison to the conservative tracer Br-. For the remaining sorbents, Br- along with low concentrations of Hg were eluted within the first 3 pore volumes, indicating limited retardation of Hg. Overall, removal of Hg by sorbents was substantial, suggesting that sorbents might be suitable for deployment in contaminated environments. High concentrations of DOM leaching from the soil columns likely influenced the speciation of Hg and inhibited sorption to the sorbents. Incomplete removal of Hg by any sorbent suggests that additional optimization is needed to increase efficiency.


Asunto(s)
Contaminantes Ambientales , Mercurio , Contaminación Ambiental , Humanos , Mercurio/análisis , Suelo
11.
Addict Biol ; 26(1): e12816, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-31373129

RESUMEN

Epigenetic enzymes oversee long-term changes in gene expression by integrating genetic and environmental cues. While there are hundreds of enzymes that control histone and DNA modifications, their potential roles in substance abuse and alcohol dependence remain underexplored. A few recent studies have suggested that epigenetic processes could underlie transcriptomic and behavioral hallmarks of alcohol addiction. In the present study, we sought to identify epigenetic enzymes in the brain that are dysregulated during protracted abstinence as a consequence of chronic and intermittent alcohol exposure. Through quantitative mRNA expression analysis of over 100 epigenetic enzymes, we identified 11 that are significantly altered in alcohol-dependent rats compared with controls. Follow-up studies of one of these enzymes, the histone demethylase KDM6B, showed that this enzyme exhibits region-specific dysregulation in the prefrontal cortex and nucleus accumbens of alcohol-dependent rats. KDM6B was also upregulated in the human alcoholic brain. Upregulation of KDM6B protein in alcohol-dependent rats was accompanied by a decrease of trimethylation levels at histone H3, lysine 27 (H3K27me3), consistent with the known demethylase specificity of KDM6B. Subsequent epigenetic (chromatin immunoprecipitation [ChIP]-sequencing) analysis showed that alcohol-induced changes in H3K27me3 were significantly enriched at genes in the IL-6 signaling pathway, consistent with the well-characterized role of KDM6B in modulation of inflammatory responses. Knockdown of KDM6B in cultured microglial cells diminished IL-6 induction in response to an inflammatory stimulus. Our findings implicate a novel KDM6B-mediated epigenetic signaling pathway integrated with inflammatory signaling pathways that are known to underlie the development of alcohol addiction.


Asunto(s)
Alcoholismo/genética , Histona Demetilasas con Dominio de Jumonji/genética , Animales , Células Cultivadas , Epigénesis Genética , Etanol/metabolismo , Histona Demetilasas/genética , Histonas/metabolismo , Humanos , Corteza Prefrontal/metabolismo , Ratas , Transducción de Señal , Regulación hacia Arriba
12.
Methods Mol Biol ; 2225: 217-226, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33108665

RESUMEN

Immune modulators play critical roles in the progression of wounds to normal or conversely delayed healing, through the regulation of normal tissue regrowth, scarring, inflammation, and growth factor expression. Many immune modulator recombinants are under active preclinical study or in clinical trial to promote improved acute or chronic wound healing and to reduce scarring. Viruses have evolved highly efficient immune modulators for the evasion of host-defensive immune responses that target and kill invasive viruses. Recent studies have proven that some of these virus-derived immune modulators can be used to promote wound healing with significantly improved speed and reduced scarring in rodent models. Mouse full-thickness excisional wound model is one of the most commonly used animal models used to study wound healing for its similarity to humans in the healing phases and associated cellular and molecular mechanisms. This chapter introduces this mouse dermal wound healing model in detail for application in studying viral immune modulators as new treatments to promote wound healing. Details of hydrogel, protein construction, and topical application methods for these therapeutic proteins are provided in this chapter.


Asunto(s)
Cicatriz/prevención & control , Factores Inmunológicos/farmacología , Myxoma virus/química , Herida Quirúrgica/tratamiento farmacológico , Proteínas Virales/farmacología , Cicatrización de Heridas/efectos de los fármacos , Administración Cutánea , Animales , Quitosano/química , Cicatriz/genética , Cicatriz/inmunología , Cicatriz/patología , Colágeno Tipo I/biosíntesis , Colágeno Tipo I/genética , Modelos Animales de Enfermedad , Sistemas de Liberación de Medicamentos , Femenino , Expresión Génica , Hidrogeles/química , Factores Inmunológicos/inmunología , Masculino , Ratones , Ratones Endogámicos C57BL , Piel/efectos de los fármacos , Piel/lesiones , Herida Quirúrgica/genética , Herida Quirúrgica/inmunología , Herida Quirúrgica/patología , Proteínas Virales/inmunología , Cicatrización de Heridas/inmunología
13.
Methods Mol Biol ; 2225: 257-273, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33108668

RESUMEN

Solid tissue transplant is a growing medical need that is further complicated by a limited donor organ supply. Acute and chronic rejection occurs in nearly all transplants and reduces long-term graft survival, thus increasing the need for repeat transplantation. Viruses have evolved highly adapted responses designed to evade the host's immune defenses. Immunomodulatory proteins derived from viruses represent a novel class of potential therapeutics that are under investigation as biologics to attenuate immune-mediated rejection and damage. These immune-modulating proteins have the potential to reduce the need for traditional posttransplant immune suppressants and improve graft survival. The myxoma virus-derived protein M-T7 is a promising biologic that targets chemokine and glycosaminoglycan pathways central to kidney transplant rejection. Orthotopic transplantations in mice are prohibitively difficult and costly and require a highly trained microsurgeon to successfully perform the procedure. Here we describe a kidney-to-kidney subcapsular transplant model as a practical and simple method for studying transplant rejection, a model that requires fewer mice. One kidney can be used as a donor for transplants into six or more recipient mice. Using this model there is lower morbidity, pain, and mortality for the mice. Subcapsular kidney transplantation provides a first step approach to testing virus-derived proteins as new potential immune-modulating therapeutics to reduce transplant rejection and inflammation.


Asunto(s)
Antiinflamatorios/farmacología , Rechazo de Injerto/prevención & control , Supervivencia de Injerto , Factores Inmunológicos/farmacología , Trasplante de Riñón/métodos , Myxoma virus/química , Proteínas Virales/farmacología , Animales , Antiinflamatorios/inmunología , Antiinflamatorios/metabolismo , Biomarcadores/análisis , Quimiocinas/biosíntesis , Complemento C4b/genética , Complemento C4b/inmunología , Femenino , Expresión Génica , Rechazo de Injerto/genética , Rechazo de Injerto/inmunología , Rechazo de Injerto/patología , Factores Inmunológicos/biosíntesis , Factores Inmunológicos/inmunología , Riñón/inmunología , Riñón/cirugía , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Fragmentos de Péptidos/genética , Fragmentos de Péptidos/inmunología , Receptores de Interferón/biosíntesis , Receptores de Interferón/inmunología , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/inmunología , Proteínas Recombinantes/farmacología , Trasplante Homólogo , Proteínas Virales/biosíntesis , Proteínas Virales/inmunología
14.
Pharmaceutics ; 12(11)2020 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-33105865

RESUMEN

Complex dermal wounds represent major medical and financial burdens, especially in the context of comorbidities such as diabetes, infection and advanced age. New approaches to accelerate and improve, or "fine tune" the healing process, so as to improve the quality of cutaneous wound healing and management, are the focus of intense investigation. Here, we investigate the topical application of a recombinant immune modulating protein which inhibits the interactions of chemokines with glycosaminoglycans, reducing damaging or excess inflammation responses in a splinted full-thickness excisional wound model in mice. M-T7 is a 37 kDa-secreted, virus-derived glycoprotein that has demonstrated therapeutic efficacy in numerous animal models of inflammatory immunopathology. Topical treatment with recombinant M-T7 significantly accelerated wound healing when compared to saline treatment alone. Healed wounds exhibited properties of improved tissue remodeling, as determined by collagen maturation. M-T7 treatment accelerated the rate of peri-wound angiogenesis in the healing wounds with increased levels of TNF, VEGF and CD31. The immune cell response after M-T7 treatment was associated with a retention of CCL2 levels, and increased abundances of arginase-1-expressing M2 macrophages and CD4 T cells. Thus, topical treatment with recombinant M-T7 promotes a pro-resolution environment in healing wounds, and has potential as a novel treatment approach for cutaneous tissue repair.

15.
PLoS One ; 15(9): e0232437, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32986713

RESUMEN

Subsurface microbial communities mediate the transformation and fate of redox sensitive materials including organic matter, metals and radionuclides. Few studies have explored how changing geochemical conditions influence the composition of groundwater microbial communities over time. We temporally monitored alterations in abiotic forces on microbial community structure using 1L in-field bioreactors receiving background and contaminated groundwater at the Oak Ridge Reservation, TN. Planktonic and biofilm microbial communities were initialized with background water for 4 days to establish communities in triplicate control reactors and triplicate test reactors and then fed filtered water for 14 days. On day 18, three reactors were switched to receive filtered groundwater from a contaminated well, enriched in total dissolved solids relative to the background site, particularly chloride, nitrate, uranium, and sulfate. Biological and geochemical data were collected throughout the experiment, including planktonic and biofilm DNA for 16S rRNA amplicon sequencing, cell counts, total protein, anions, cations, trace metals, organic acids, bicarbonate, pH, Eh, DO, and conductivity. We observed significant shifts in both planktonic and biofilm microbial communities receiving contaminated water. This included a loss of rare taxa, especially amongst members of the Bacteroidetes, Acidobacteria, Chloroflexi, and Betaproteobacteria, but enrichment in the Fe- and nitrate- reducing Ferribacterium and parasitic Bdellovibrio. These shifted communities were more similar to the contaminated well community, suggesting that geochemical forces substantially influence microbial community diversity and structure. These influences can only be captured through such comprehensive temporal studies, which also enable more robust and accurate predictive models to be developed.


Asunto(s)
Bacterias , Sedimentos Geológicos/microbiología , Agua Subterránea/química , Metales Pesados/análisis , Microbiota , Microbiología del Suelo , Bacterias/clasificación , Bacterias/crecimiento & desarrollo , Biopelículas , Reactores Biológicos/microbiología , Filogenia , ARN Ribosómico 16S/genética
16.
Mol Ther Oncolytics ; 18: 171-188, 2020 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-32695875

RESUMEN

Multiple myeloma (MM) is a hematological malignancy of monoclonal plasma cells that remains incurable. Standard treatments for MM include myeloablative regimens and autologous cell transplantation for eligible patients. A major challenge of these treatments is the relapse of the disease due to residual MM in niches that become refractory to treatments. Therefore, novel therapies are needed in order to eliminate minimal residual disease (MRD). Recently, our laboratory reported that virotherapy with oncolytic myxoma virus (MYXV) improved MM-free survival in an allogeneic transplant mouse model. In this study, we demonstrate the capacity of donor autologous murine leukocytes, pre-armed with MYXV, to eliminate MRD in a BALB/c MM model. We report that MYXV-armed bone marrow (BM) carrier leukocytes are therapeutically superior to MYXV-armed peripheral blood mononuclear cells (PBMCs) or free virus. Importantly, when cured survivor mice were re-challenged with fresh myeloma cells, they developed immunity to the same MM that had comprised MRD. In vivo imaging demonstrated that autologous carrier cells armed with MYXV were very efficient at delivery of MYXV into the recipient tumor microenvironment. Finally, we demonstrate that treatment with MYXV activates the secretion of pro-immune molecules from the tumor bed. These results highlight the utility of exploiting autologous leukocytes to enhance tumor delivery of MYXV to treat MRD in vivo.

17.
Chemosphere ; 255: 126951, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32417512

RESUMEN

The processing of sediment to accurately characterize the spatially-resolved depth profiles of geophysical and geochemical properties along with signatures of microbial density and activity remains a challenge especially in complex contaminated areas. This study processed cores from two sediment boreholes from background and contaminated core sediments and surrounding groundwater. Fresh core sediments were compared by depth to capture the changes in sediment structure, sediment minerals, biomass, and pore water geochemistry in terms of major and trace elements including pollutants, cations, anions, and organic acids. Soil porewater samples were matched to groundwater level, flow rate, and preferential flows and compared to homogenized groundwater-only samples from neighboring monitoring wells. Groundwater analysis of nearby wells only revealed high sulfate and nitrate concentrations while the same analysis using sediment pore water samples with depth was able to suggest areas high in sulfate- and nitrate-reducing bacteria based on their decreased concentration and production of reduced by-products that could not be seen in the groundwater samples. Positive correlations among porewater content, total organic carbon, trace metals and clay minerals revealed a more complicated relationship among contaminant, sediment texture, groundwater table, and biomass. The fluctuating capillary interface had high concentrations of Fe and Mn-oxides combined with trace elements including U, Th, Sr, Ba, Cu, and Co. This suggests the mobility of potentially hazardous elements, sediment structure, and biogeochemical factors are all linked together to impact microbial communities, emphasizing that solid interfaces play an important role in determining the abundance of bacteria in the sediments.


Asunto(s)
Sedimentos Geológicos/química , Uranio/química , Contaminantes Radiactivos del Agua/química , Bacterias , Agua Subterránea/química , Nitratos/análisis , Compuestos Orgánicos , Sulfatos/análisis , Uranio/análisis , Contaminantes Radiactivos del Agua/análisis
18.
Microbiome ; 8(1): 51, 2020 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-32252814

RESUMEN

BACKGROUND: The newly defined superphylum Patescibacteria such as Parcubacteria (OD1) and Microgenomates (OP11) has been found to be prevalent in groundwater, sediment, lake, and other aquifer environments. Recently increasing attention has been paid to this diverse superphylum including > 20 candidate phyla (a large part of the candidate phylum radiation, CPR) because it refreshed our view of the tree of life. However, adaptive traits contributing to its prevalence are still not well known. RESULTS: Here, we investigated the genomic features and metabolic pathways of Patescibacteria in groundwater through genome-resolved metagenomics analysis of > 600 Gbp sequence data. We observed that, while the members of Patescibacteria have reduced genomes (~ 1 Mbp) exclusively, functions essential to growth and reproduction such as genetic information processing were retained. Surprisingly, they have sharply reduced redundant and nonessential functions, including specific metabolic activities and stress response systems. The Patescibacteria have ultra-small cells and simplified membrane structures, including flagellar assembly, transporters, and two-component systems. Despite the lack of CRISPR viral defense, the bacteria may evade predation through deletion of common membrane phage receptors and other alternative strategies, which may explain the low representation of prophage proteins in their genomes and lack of CRISPR. By establishing the linkages between bacterial features and the groundwater environmental conditions, our results provide important insights into the functions and evolution of this CPR group. CONCLUSIONS: We found that Patescibacteria has streamlined many functions while acquiring advantages such as avoiding phage invasion, to adapt to the groundwater environment. The unique features of small genome size, ultra-small cell size, and lacking CRISPR of this large lineage are bringing new understandings on life of Bacteria. Our results provide important insights into the mechanisms for adaptation of the superphylum in the groundwater environments, and demonstrate a case where less is more, and small is mighty.


Asunto(s)
Adaptación Fisiológica , Bacterias/genética , Tamaño del Genoma , Genoma Bacteriano , Agua Subterránea/microbiología , Fermentación , Redes y Vías Metabólicas , Metagenómica
19.
J Environ Sci (China) ; 85: 156-167, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31471022

RESUMEN

This study evaluated uranium sequestration performance in iron-rich (30 g/kg) sediment via bioreduction followed by reoxidation. Field tests (1383 days) at Oak Ridge, Tennessee demonstrated that uranium contents in sediments increased after bioreduced sediments were re-exposed to nitrate and oxygen in contaminated groundwater. Bioreduction of contaminated sediments (1200 mg/kg U) with ethanol in microcosm reduced aqueous U from 0.37 to 0.023 mg/L. Aliquots of the bioreduced sediment were reoxidized with O2, H2O2, and NaNO3, respectively, over 285 days, resulting in aqueous U of 0.024, 1.58 and 14.4 mg/L at pH 6.30, 6.63 and 7.62, respectively. The source- and the three reoxidized sediments showed different desorption and adsorption behaviors of U, but all fit a Freundlich model. The adsorption capacities increased sharply at pH 4.5 to 5.5, plateaued at pH 5.5 to 7.0, then decreased sharply as pH increased from 7.0 to 8.0. The O2-reoxidized sediment retained a lower desorption efficiency at pH over 6.0. The NO3--reoxidized sediment exhibited higher adsorption capacity at pH 5.5 to 6.0. The pH-dependent adsorption onto Fe(III) oxides and formation of U coated particles and precipitates resulted in U sequestration, and bioreduction followed by reoxidation can enhance the U sequestration in sediment.


Asunto(s)
Biodegradación Ambiental , Contaminantes Radiactivos del Suelo/metabolismo , Uranio/metabolismo , Sedimentos Geológicos/química , Contaminantes Radiactivos del Suelo/química , Tennessee , Uranio/química
20.
P T ; 43(12): 764-768, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30559590

RESUMEN

PURPOSE: To provide medication safety tips to optimize the management of patients receiving treatment for chronic hepatitis C virus (HCV) infection. SUMMARY: Ensuring safe medication use in patients who receive treatment for HCV infection is a crucial component in providing optimal patient care. Because of the complexity of available treatment options, numerous challenges exist in preventing medication errors with HCV therapies. This article will focus on the selection of appropriate treatment options along with proper dosing and duration, awareness of concomitant disease states and drug interactions, identifying adverse drug reactions (ADRs) and patient counseling points, the provision of adherence counseling and prevention of treatment interruptions, improving communication with patients and between pharmacies, and recognizing the importance of a multidisciplinary approach. CONCLUSION: Maintaining awareness of medication safety strategies geared toward HCV pharmacotherapy is critical for providing optimal care for patients while minimizing the opportunity for errors.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...